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In quantum physics, a measurement is represented by a projection on some closed
subspace of a Hilbert space. We study algebras of operators that abstract from the
algebra of projections on closed subspaces of a Hilbert space. The properties of such
operators are justified on epistemological grounds. Commutation of measurements is
a central topic of interest. Classical logical systems may be viewed as measurement
algebras in which all measurements commute.
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1. INTRODUCTION

We define a new class of abstract structures for which we coin the term al-
gebras of measurements, M-algebras for short. Those structures are intended to
capture the logic of physical measurements and in particular of quantum mea-
surements. From the physicist’s point of view, it provides a framework, devoid of
real physics and numbers, in which both classical and quantum mechanics can be
described and the difference between them put in evidence. Classical physics is,
therefore, a special, very limited, almost trivial, case of quantum physics. From
the logician’s point of view, it provides a generalized view of (nonmonotonic)
logic in which classical, i.e., monotonic, logic is a special, very limited, almost
trivial case.

This work takes its inspiration from the pioneering work of Birkhoff and
von Neumann (1936). They proposed the view that experimental propositions
are closed subspaces of a Hilbert space and measurements are projections on

1 School of Engineering, Hebrew University, Jerusalem 91904, Israel; e-mail: lehmann@cs.huji.ac.il.
2 Department of Computing, King’s College, London, U.K.; e-mails: Kurt.Engesser@uni-konstanz.de,

dg@dcs.kcl.ac.uk.

715
0020-7748/06/0400-0715/0 C© 2006 Springer Science+Business Media, Inc.



716 Lehmann, Engesser, and Gabbay

such closed subspaces. Strangely enough, they presented only a very preliminary
analysis of the properties of such projections and this topic seems to have been
almost ignored since. It had to wait for the thoroughly new point of view pro-
posed by Engesser and Gabbay (2002). In this paper, we take the following
views:

• the Hilbertian formalization of quantum physics has been so extremely
successful for the reason that the algebra of projections in Hilbert spaces
possesses the properties that are epistemologically necessary to deal with
measurements that change the state of the system measured. We shall,
therefore, provide epistemological justifications to the properties possessed
by the Hilbertian formalism,

• not all properties of the Hilbertian formalism are epistemologically justified
with the same force. Some (logical) aspects of quantics may, probably, be
studied, with advantage, in a weaker context,

• the formalism of measurement algebras suggests some, logically based,
principles akin to superselection rules.

Let us, first, develop the analogy between measurements and propositions.
A physical measurement, e.g., measuring the temperature of a gas to be 138◦K,
asserts that the proposition “the temperature of this gas is 138◦K” holds true.
A measurement, in a sense, asserts the truth of a proposition. This is the fun-
damental analogy between physics and logic: making a measurement is similar
to asserting a certain kind of proposition. The example above has been taken
from classical physics. Consider now measuring the spin of a particle along the
z-axis to be 1/2. This measurement is akin to asserting the truth of the proposition
the spin along the z-axis is 1/2. But, here, the assertion of the proposition, i.e.,
the measurement, changes the state of the system. The assertion holds in the
state resulting from the measurement, but did not necessarily hold in the state of
the system before the measurement was performed. In fact, it held in this pre-
vious state if and only if the measurement left the state unchanged. Inspired by
the analogy between measurements and propositions, we set ourselves to study
the logic of propositions that not only hold at states, i.e., models, but also operate
on them, transforming the state in which they are evaluated into another one.
A proposition holds in some state if and only if this state is a fixpoint for the
proposition.

Section 2 summarizes in a most succinct and formal way the definition of
algebras of measurements (M-algebras), by presenting a list of properties. It should
be used as an overview and memento only. The following sections will explain the
properties, present motivation and explanation, and then prove basic properties of
M-algebras.
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2. M-ALGEBRAS

The structures that concern us deal with a set X and functions from X to
X. We shall denote the composition of functions by ◦ and composition has to be
understood from left to right: for any x ∈ X, (α ◦ β)(x) = β(α(x)). If α : X −→
X, we shall denote by FP (α) the set of all fixpoints of α : FP(α)

def= {x ∈ X|α(x) =
x}.

Definition 1. An M-algebra is a pair 〈X,M〉 in which X is a nonempty set and M
is a set of functions from X to X, that satisfies the six properties described below.

(i) Illegitimate ∃ 0 ∈ X such that ∀α ∈ M, 0 ∈ FP(α), i.e., α(0) = 0.
(ii) Idempotence ∀α ∈ M, α ◦ α = α i.e., for any x ∈ X, α(α(x)) = α(x). The

next property requires a preliminary definition.

Definition 2. For any α, β : X −→ X, we shall say that β preserves α if and
only if α preserves FP(β), i.e., if α(FP(β)) ⊆ FP(β), i.e., ∀x ∈ X, β(x) = x ⇒
β(α(x)) = α(x).

(iii) Composition ∀α, β ∈ M, if α preserves β, then β ◦ α ∈ M.
(iv) Interference ∀x ∈ X,∀α, β ∈ M, if x ∈ FP(α) i.e., α(x) = x, and

(β ◦ α)(x) ∈ FP(β), i.e., β(α(β(x))) = α(β(x)), then β(x) ∈ FP(α), i.e.,
α(β(x)) = β(x).

(v) Cumulativity ∀x ∈ X,∀α, β ∈ M, if α(x) ∈ FP(β) i.e., β(α(x)) = α(x),
and β(x) ∈ FP(α), i.e., α(β(x)) = β(x), then α(x) = β(x).

The next property requires some notation. For any α : X −→ X, we

shall denote by Z(α) the set of zeros of Z(α)
def= {x ∈ X|α(x) = 0}.

(vi) Negation ∀α ∈ M, ∃(¬α) ∈ M, such that FP(¬α) = Z(α), and Z(¬α) =
FP(α), i.e., ∀x ∈ X, α(x) = 0 iff (¬α)(x) = x and ∀x ∈ X.α(x) = x iff
(¬α)(x) = 0.

Two additional properties will be considered in Section 9.1.

Definition 3. An M-algebra is separable if it satisfies the following:
Separability For any x, y ∈ X − {0}, if x �= y then ∃α ∈ M such that α(x) =

x and α(y) �= y.

Definition 4. An M-algebra is strongly-separable if it satisfies the following:
Strong separability For any x ∈ X − {0}, there exists a measurement ex ∈

M such that FP(ex) = {0, x}.
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3. MOTIVATION AND JUSTIFICATION

In this section, we shall leisurely explain each one of the properties described
in Section 2. Our explanation of each property will include three parts:

(i) an epistemological explanation whose purpose is to explain why the prop-
erty is natural or even required when one thinks of measurements,

(ii) an explanation of why the property holds in the algebra 〈H,L〉 where H is
a Hilbert space and L the set of all projections onto closed subspaces of H,

(iii) an explanation of the logical meaning of the property, based on the identi-
fication of measurements with propositions.

3.1. States

We shall reserve the term state for the elements of X. In physical terms, the
set X is the set of all possible states of a system. When we say state we mean
a state as fully determined as is physically possible: e.g., in classical mechanics,
a set of 6n values if we consider n particles (three values for position and three
values for momentum), or what is generally termed, in quantum physics a pure
state.

In the Hilbertian description of quantum physics, a (pure) state is a one-
dimensional subspace, i.e., a ray, in some Hilbert space. The illegitimate state, 0
is the zero-dimensional subspace.

A logician can give the term “states” two different acceptions. It sometimes
means a full definition of a possible state of the world, i.e., what is true and what
is false. This is a model, a maximal consistent theory. Sometimes, it means a
set of propositions known to be true. In this sense, it is any consistent theory,
not necessarily maximal. We shall see that Illegitimate forces us to consider the
inconsistent theory as a state.

3.2. Measurements

The elements of M represent measurements on the physical system whose
possible states are those of X. In classical physics, one may assume that a mea-
surement leaves the measured system unchanged. It is a hallmark of quantum
physics that this assumption cannot be held true anymore. In quantum physics,
measurements, in general, change the state of the system. This is the phenomenon
called collapse of the wave function. Therefore we model measurements by trans-
formations on the set of states. Clearly not any transformation can be called a
measurement. A measurement changes the system in some minimal way. A trans-
formation that brings about a wild change in the system cannot be considered to
be a measurement. Many of the properties presented above and discussed below
explicit this requirement.



Algebras of Measurements: The Logical Structure of Quantum Mechanics 719

A word of caution is necessary here before we proceed. When we speak about
measurement, we do not mean some declaration of intentions such as measuring
the position of a particle, we mean the action of measuring some physical quantity
and finding a specific value, such as finding the particle at the origin of the system
of coordinates. Measuring 0.3◦K and measuring 1000◦K are not two different
possible results for the same measurement, they are two different measurements.

In the Hilbertian description of quantum physics, measurable quantities are
represented by Hermitian operators. Measurements in our sense are represented
by a pair 〈A, λ〉 where A is a Hermitian operator and λ an eigenvalue of A. The
effect of measuring 〈A, λ〉 in state X is to project X onto the eigen-subspace of A
for eigenvalue λ. A measurement α is, therefore, a projection on a closed subspace
of a Hilbert space. The set FP(α) is the closed subspace on which α projects.
Those projections onto eigensubspaces are the measurements we try to identify.
Our goal is to identify the algebraic properties of such projections that make them
suitable to represent physical measurements in quantum physics.

From a classical logician’s point of view, a measurement is a proposition. A
proposition α acts on a state, i.e., a theory T by sending it to the theory that results
from adding α to T and then closing under logical consequence. One sees that,
from this point of view, if T is maximal then α(T ) is either T (iff α is in T) or the
inconsistent theory. We see here that a proposition (measurement) holds in some
model (state) if and only if the model is a fixpoint of the proposition.

This is the interpretation that we shall take along with us: a measurement α

holds at some state X, or, equivalently X satisfies α, if and only if x ∈ FP(α).

3.3. Illegitimate

Illegitimate is mainly a technical requirement. The sequel will show why it
is handy. The illegitimate state 0 is a state that is physically impossible. Physicists,
in general, do not consider this state explicitly, we shall. From the epistemological
point of view, we just require that amongst all the possible states of the system
we include a state, denoted 0 that represents physical impossibility. There is not
much sense in measuring anything in the illegitimate state, therefore, it is natural to
assume that no measurement α operating on the illegitimate state can change it into
some legitimate state. This is the meaning of our requirement that 0 be a fixpoint
of any measurement. In other terms, the state 0 satisfies every measurement, every
measurement holds at 0.

In the Hilbertian description of Quantum Physics the zero vector plays the
role of our 0. Indeed, since a projection is linear, it preserves the zero vector.

From a logician’s point of view Illegitimate requires us to include the incon-
sistent theory in X. Clearly, the result of adding any proposition to the inconsistent
theory leaves us with the inconsistent theory.
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3.4. Zeros

We have described in Section 3.2 the interpretation we give to the fact that
a state X is a fixpoint of a measurement α. We want to give a similarly central
meaning to the fact that a state X is a zero of a measurement α : x ∈ Z(α),
i.e., α(x) = 0. If measuring α sends X to the illegitimate state, measuring α is
physically impossible at X. This should be understood as meaning that, in the state
X, the physical quantity measured by α has some definite value different from the
value measured by α.

If, at X, the spin is 1/2 along the z-axis, then measuring along the z-axis a
spin of −1/2 is physically impossible and therefore the measurement of −1/2
sends the state X to the illegitimate state 0. The status of the measurement that
measures −1/2 along the x-axis is completely different: this measurement does
not send X to 0, but to some legitimate state in which the spin along the x-axis is
−1/2.

It is natural to say that a measurement α has a definite value at X iff X

is either a fixpoint or a zero of α. We shall define: Def (α)
def= FP(α) ∪ Z(α). If

x ∈ Def (α), α has a definite value at X: either it holds at X or it is impossible at
X. If x �∈ Def (α), α(x) is some state different from X and different from 0.

In the Hilbertian presentation of quantum physics, the zeros of a measurement
α are the rays orthogonal to the set of fixpoints of α.

3.5. Idempotence

Idempotence is extremely meaningful. It is an epistemologically fundamen-
tal property of measurements that they are idempotent: if α is a measurement
and X a state, then α(α(x)) = α(x), i.e., measuring the same value twice in a
row is exactly like measuring it once. Note that, by Illegitimate, if x ∈ Def (α),
then α(α(x)) = α(x). The import of Idempotence concerns states that are not in
Def (α).

It seems very difficult to imagine a scientific theory in which measurements
are not idempotent: it would be impossible to check directly that a system is
indeed in the state we expect it to be in without changing it. Idempotence is one of
the conditions that ensure that measurements change states only minimally. This
principle seems to be a fundamental principle of all science, having to do with the
reproducibility of experiments. If there was a physical system and a measurement
that, if performed twice in a row gave different results, then such a measurement
would be, in principle, irreproducible.

In the Hilbertian description of quantum physics, measurements are modeled
by projections onto eigensubspaces. Any projection is idempotent. But it is en-
lightening to reflect on the phenomenology of this idempotence. For an electron
whose spin is positive along the z-axis (state x0), measuring a negative spin along
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the x-axis is feasible, i.e., does not send the system into the illegitimate state, but
sends the system into a state (x1) different from the original one, x0. Nevertheless,
a consequence of the collapse of the wave function is that, after measuring a
negative spin along the x-axis, the spin is indeed negative along the x-axis and
therefore a new measurement of a negative spin along the x-axis leaves the state
x1 of our electron unchanged, whereas measuring a positive spin along the x-axis
is now an unfeasible measurement and sends x1 to the illegitimate state. Note that
such a measurement of a positive spin along the x-axis in the original state x0

brings us to a legitimate state x3 different from x0 and x1. The idempotence of
measurements, probably epistemologically necessary, provides some explanation
of why projections in Hilbert spaces are a suitable model.

From the logician’s point of view, idempotence corresponds to the fact that
asserting the truth of a proposition is equivalent to asserting it twice. For any
reasonable consequence operation C, C(C(T , a), a) = C(T , a).

3.6. Preservation

The definition of preservation encapsulates the way in which different mea-
surements can interfere. If α preserves FP(β), the set of states in which β holds,
α never destroys the truth of proposition β: it never interferes badly with β.

3.7. Composition

Composition has physical significance. It is a global principle: it assumes a
global property and concludes a global property. Measurements are mappings of
X into itself, therefore we may consider the composition of two measurements.
According to the principle of minimal change, we do not expect the composition
of two measurements to be a measurement: two small changes may make a big
change. But, if those two measurements do not interfere in any negative way with
each other, we may consider their composition as small changes that do not add
up to a big change. Composition requires that if, indeed, α preserves β, then the
composite operation that consists of measuring β first, and then α does not add up
to a big change and should be a bona fide measurement. Notice that we perform
β first, whose result is (by Idempotence) a state that satisfies β, then we perform
α, which does not destroy the result obtained by the first measurement β.

In the Hilbertian presentation of quantum physics, consider α, the projection
on some closed subspace A and β, the projection on B. The measurement α pre-
serves β iff the projection of the subspace B onto A is contained in the intersection
A ∩ B of A and B. In such a case the composition β ◦ α of the two projections,
first on B and then on A is equivalent to the projection on the intersection A ∩ B.
It is therefore a projection on some closed subspace.
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For the classical logician, measurements always preserve each other. If a ∈ T,
then a ∈ C(T, b) for any proposition b. This is a consequence of the monotonicity
of C. Composition requires that the composition of any two measurements be
a measurement. For the logician, β ◦ α is the measurement β ∧ α. Composition
amounts to the assumption that M is closed under conjunction.

Technically, the role of Composition is to ensure that two commuting mea-
surements’ composition is a measurement. Equivalently, we could have, instead of
Composition, required that for any pair α, β ∈ M such that α ◦ β = β ◦ α, their
composition α ◦ β be in M.

3.8. Interference

Interference has a deep physical meaning. It is a local principle, i.e., holds
separately at each state x. It may be seen as a local logical version of Heisenberg’s
uncertainty principle. It considers a state x that satisfies α. Measuring β at x may
leave α undisturbed (this is the conclusion), but, if β disturbs α, then no state at
which both α and β hold can ever be attained by measuring α and β in succession.
In other words, either such a state, satisfying both α and β is obtained immediately,
or never.

We shall say that β disturbs α at x if x ∈ FP(α) but β(x) �∈ FP(α). Note that β
preserves α if and only if it disturbs α at no x. Interference says that if β disturbs
α at x then α disturbs β at β(x), and β disturbs α at (β ◦ α)(x), and so on. We chose
to name this property interference since it deals with the local interference of two
measurements: if they interfere once, they will continue interfering ad infinitum.

In the Hilbertian presentation of quantum physics, the principle of Interfer-
ence is satisfied for the following reason. Consider a vector x ∈ H and two closed
subspaces of H : A and B. Assume x is in A. Let y be the projection of x onto B
and z the projection of y onto A. Assume that z is in B. Since both x and z are in A,
the vector z − x is in A. Similarly, the vector z − y is in B. But y is the projection
of x onto B and therefore y − x is orthogonal to B and in particular orthogonal to
z − y. We have (y − x) · (z − y) = 0, and

y · z − y · y − x · z + x · y = 0.

Since z is the projection of y onto A, the vector z − y is orthogonal to A and we
have (y − x) · (z − y) = 0, and

z · z − z · y − x · z + x · y = 0.

By substracting the first equality from the second we get:

−z · y − y · z + y · y + z · z = (y − z) · (y − z) = 0.

We conclude that y = z.
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For the logician, it is always the case that β(x) ∈ FP(α), if x ∈ FP(α), as
noticed in Section 3.7.

3.9. Cumulativity

Cumulativity is motivated by Logic. It does not seem to have been reflected
upon by physicists. It parallels the cumulativity property that is central to non-
monotonic logic: see for example (Kraus et al., 1990; Makinson, 1994; Lehmann,
2001). If the measurement of α at X causes β to hold (at α(x)), and the mea-
surement of β at X causes α to hold (at β(x)) then those two measurements
have, locally (at X), the same effect. Indeed, they cannot be directly distinguished
by testing α and β. Cumulativity says that they cannot be distinguished even
indirectly.

In the Hilbertian formalism, if the projection, y, of X onto some closed
subspace A is in B (closed subspace) then y is the projection of x onto the
intersection A ∩ B. If the projection z of x onto B is in A, z is the projection of
x onto the intersection B ∩ A and therefore y = z. In fact, a stronger property
than Cumulativity holds in Hilbert spaces. The following property, similar to the
Loop property of (Kraus et al., 1990), holds in Hilbert spaces: L-cumulativity
∀x∈ X, for any natural number n and for any sequence αi ∈ M, i = 0, . . . , n if,
for any such i, αi(x) ∈ FP(αi+1), where n + 1 is understood as 0, then, for any
0 ≤ i, j ≤ n, αi(x) = αj (x).

To see that this property holds in Hilbert spaces, consider the distance di

between X and the closed subspace Ai on which αi projects. The condition
αi(x) ∈ FP(αi+1) implies that di+1 ≤ di We have d0 ≥ d1 ≥ . . . ≥ dn ≥ d0 and we
conclude that all those distances are equal and therefore αi(x) ∈ FP(αi+1) implies
that αi(x) = αi+1(x). We do not know whether the stronger L-cumulativity is
meaningful for quantum physics, or simply an uninteresting consequence of the
Hilbertian formalism.

For the logical point of view, one easily sees that any classical measurements
satisfy Cumulativity, and even L-cumulativity.

3.10. Negation

Negation also originates in logic. It corresponds to the assumption that
propositions are closed under negation. If α is a measurement, α tests whether a
certain physical quantity has a specific value v. If such a test can be performed,
it seems that a similar test could be performed to test the fact that the physical
quantity of interest has some other specific value.
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In the Hilbertian formalism, to any closed subspace corresponds its orthogo-
nal subspace, also closed.

For the logician, Negation amounts to the closure of the set of (classical)
measurements, i.e., formulas, under negation.

3.11. Separability

We remind the reader that none of the separability assumptions is included
in the defining properties of an M-algebra. Separability asserts that if any two
nonzero states x and y are different, there is a measurement that holds at x and
not at y. Indeed, if all measurements that hold at x also hold at y it would not
be possible to be sure that the system is in x and not in y. Compared to the
previous requirements, Separability is of quite a different kind. It is some akin to
a superselection principle, though presented in a dual way: a restriction on the set
of states not on the set of observables.

Note that this implies that, in any nontrivial M-algebra (an M-algebra is trivial
if X = {0} and M = ∅), every state satisfies some measurement.

In the Hilbertian formalism, the projections on the one-dimensional subspaces
defined by x and y, respectively do the job.

For the logician, if T1 and T2 are two maximal consistent sets that are different,
there is a formula α in T1 − T2. But, one may easily find (nonmaximal) different
theories T1 and T2 such that T1 ⊂ T2, contradicting Separability.

Strong Separability is a stronger requirement. Indeed, in a strongly separable
M-algebra, for any nonzero, different, states x, y the measurement ex holds at x

and not at y.
The epistemological motivation for such a strong requirement is the fol-

lowing. One must be able to prepare a system in each of its states, i.e., each
of the nonzero elements x of X. Once this has been done, one should be able
to check that indeed the system is in the state it is claimed to be, i.e., there
should be a measurement that measures each nonzero state x: this measurement
is ex .

In the Hilbert space framework, every nonzero state is a one-dimensional sub-
space, therefore a closed subspace and a measurement. The same is true in classical
mechanics: every state of a system can be characterized by one proposition stating
all that is true about the system.

In the logical examples, we have seen above that considering all theories as
states defines an algebra that is not even separable. Considering only maximal
theories, on the contrary, provides for a strongly separable algebra, at least if there
is only a finite set of atomic propositions, or if we admit infinite conjunctions and
disjunctions.
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4. EXAMPLES OF M-ALGEBRAS

In this section, we shall formally define the two paradigmatical examples
of M-algebras that have been described in Section 3: propositional calculus and
Hilbert spaces.

4.1. Logical Examples

4.1.1. Propositional Calculus: A nonseparable M-algebra and a separable one

We shall now formalize our treatment of propositional calculus as an M-
algebra. In doing so, we shall present propositional calculus in the way advocated
by Tarski and Gentzen. Let L be any language closed under a unary connective
¬ and a binary connective ∧. Let Cn be any consequence operation satisfying the
following conditions (the conditions are satisfied by propositional calculus).

Inclusion ∀A ⊆ L, A ⊆ Cn(A).

Monotonicity ∀A, B ⊆ L, A ⊆ B ⇒ Cn(A) ⊆ Cn(B),

Idempotence ∀A ⊆ L, Cn(A) = Cn(Cn(A)),

Negation ∀A ⊆ L, a ∈ L, Cn(A,¬a) = L ⇔ a ∈ C(A),

Conjunction ∀A ⊆ L, a, b ∈ L, Cn(A, a, b) = Cn(A, a ∧ b).

Define a subset of L to be a theory iff it is closed under Cn : T ⊆ L is a theory
iff Cn(T) = T . Let X be the set of all theories. Let M be the language L. The action
of a formula α ∈ L on a theory T is defined by: α(T) = Cn(T ∪ {α}). In such a
structure, α holds at T iff α ∈ T. Let us check that such a structure satisfies all the
defining properties of an M-algebra. We shall not mention the uses of Inclusion.
The illegitimate state is the theoryL. Idempotence follows from the property of the
same name. Composition follows from conjunction: the composition a ◦ b is the
measurement a ∧ b. Note that any pair of measurements commute. Interference
is satisfied because a ∈ T implies a ∈ Cn(T, b). Cumulativity is satisfied because
b ∈ Cn(T, a) implies Cn(T, a) = Cn(T, a, b) by monotonicity and idempotence.
Negation holds by the property of the same name.

The M-algebra above does not satisfy Separability since there are theories
T and S such that T ⊂ S and every formula α satisfied by T is also satisfied
by S. This M-algebra is commutative: any two measurements commute since:
Cn(C(T, a), b) = Cn(C(T, b), a).

If we consider the subset Y ⊂ X consisting only of maximal consistent theo-
ries and the inconsistent theory, we see that the pair 〈 Y,L〉 is an M-algebra, because
Y is closed under the measurements in L. In this M-algebra, all measurements do
more than commute, they are classical, in the following sense.
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Definition 5. A mapping α : X −→ X is said to be classical iff for every x ∈ X,
either α(x) = x or α(x) = 0.

The M-algebra above is separable: if T1 and T2 are different maximal consis-
tent theories there is a formula a ∈ T1 − T2. It is not strongly separable, though,
if there is no single formula equivalent to a maximal theory.

4.1.2. Nonmonotonic Inference Operations

In Section 4.1.1, we assumed that the inference operation Cn was monotonic.
It seems attractive to consider the more general case of nonmonotonic inference
operations studied, for example in Lehmann (2001). More precisely what about
replacing monotonicity by the weaker

Cumulativity ∀A, B ⊆ L, A ⊆ B ⊆ C(A) ⇒ C(B) = C(A).

Notice that, in such a case, we prefer to denote our inference operation by C and
not by Cn. The reader may verify that all requirements for an M-algebra still hold
true, except for Composition. In such a structure all measurements still commute
and we therefore, need that every composition a ◦ b of measurements (formula)
be a measurement (formula). But the reader may check that a ∧ b does not have
the required properties: C(T, a ∧ b) = C(T, a, b) but, since C is not required to be
monotonic, there may well be some formula c ∈ C(T, a) that is not in C(T, a, b).
In such a case C(T, a ∧ b) �= C(C(T, a), b), as would be required. One may, then,
think of extending the language L to include formulas of the form a ◦ b acting
as compositions. But the Negation condition of the definition of an M-algebra
requires every formula (measurement) to have a negation and there is no obvious
definition for the negation of a composition. The monotonicity property seems
therefore essential.

4.1.3. Revisions

Another natural idea is to consider revisions a la AGM (Alchourrón, et al.,
1985). The action of a formula a on a theory T would be defined as the theory
T revised by a : T ∗ a. The structure obtained does not satisfy the M-algebra
assumptions. The most blatant violation concerns Negation. In revision theory,
negation does not behave at all as expected in an M-algebra.

4.2. Orthomodular and Hilbert Spaces

von Neumann (1943) has firmly set quantum mechanics in the framework
of Hilbert spaces. We assume the definition of a Hilbert space is known to the
reader. Hilbert spaces are orthomodular spaces. We shall not burden the reader
with the definition of such spaces here: the reader may replace, in the sequel, the
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word orthomodular by Hilbert and lose little of the strength of the results. The
reader may consult Varadarajan (1968). A fundamental (but not used in this paper)
result of Solèr (1995) characterizes infinite-dimensional Hilbert spaces amongst
orthomodular spaces.

4.2.1. Orthomodular Spaces

Given any orthomodular space H, denote by M the set of all closed subspaces
ofH. Then the pair 〈H, M〉 is an M-algebra, if any α ∈ M acts onH in the following
way: α(x) is the unique vector such that x = α(x) + y for some vector y ∈ α⊥. In
light of Section 3, the reader will have no trouble proving that any such structure
is an M-algebra. It is not separable, though: any two collinear vectors satisfy
exactly the same measurements. The next section will present a related separable
M-algebra.

4.2.2. Rays

Given any orthomodular space H, let X be the set of one-dimensional or
zero-dimensional subspaces of H. Let M be the set of closed subspaces of H. The
projection on a closed subspace is linear and therefore sends a one-dimensional
subspace to a one-dimensional or a zero-dimensional subspace and sends the zero-
dimensional subspace to itself. The pair 〈X, M〉 is easily seen to be an M-algebra.
This M-algebra is strongly separable: notice that X ⊂ M and that x ∈ X is the
only non-null state satisfying the measurement x.

5. PROPERTIES OF M-ALGEBRAS

We assume that 〈X, M〉 is an arbitrary M-algebra. First, we shall show that
any M-algebra includes two trivial measurements: �, analogous to the truth-value
true, that leaves every state unchanged and measures a property satisfied by every
state and ⊥, analogous to false, that sends every state to the illegitimate state, and
is nowhere satisfied.

Lemma 1. (Negation, Composition, Idempotence) There are measurements
�,⊥ ∈ M, such that for every x ∈ X,�(x) = x and ⊥(x) = 0.

Proof: The set M of measurements is not empty: assume α ∈ M. Clearly, by
Negation, the measurement ¬α preserves α. It follows, by Composition, that
α ◦ (¬α) is a measurement. Let ⊥ = α ◦ (¬α). By Idempotence and Negation,
for every x ∈ X,⊥(x) = 0. We now let � = ¬⊥. �



728 Lehmann, Engesser, and Gabbay

Then, we want to show that measurements are uniquely specified by their
fixpoints.

Lemma 2. (Idempotence, Cumulativity) For any α, β ∈ M, if FP(α) = FP(β),
then α = β.

Proof: Assume FP(α) = FP(β). Let x ∈ X. By Idempotence α(x) ∈ FP(α) and
therefore, by assumption, α(x) ∈ FP(β). Similarly β(x) ∈ FP(α). By Cumulativ-
ity, then, α = β. �

Corollary 1. (Idempotence, Cumulativity, Negation) For any α ∈ M,¬¬α =
α.

Proof: Both α and ¬¬α are measurements and FP(¬¬α) = FP(α). �

We shall now prove a very important property. Suppose x is a state in which
some measurement (i.e., proposition) holds: for example, at x the spin along the
x-axis is 1/2. Performing a measurement α on x may lead to a different state
y = α(x). At y, the spin along the x-axis may still be 1/2, or it may be the case
that the measurement α has interfered with the value of the spin. But, under no
circumstance, can it be the case that the spin along the x-axis has a definite value
different from 1/2, such as −1/2. If the value of the spin along the x-axis at y is
not 1/2, the spin must be indefinite. This expresses the fact that a measurement
α, acting on a state in which β holds, can either preserve β [when α(x) ∈ FP(β)]
or can disturb β [when α(x) �∈ Def (β)] but cannot make β impossible at x,
i.e., α(x) ∈ Z(β). This is a very natural requirement stemming from the minimal
change principle. A move from a definite value to a different definite value is too
drastic to be accepted as measurement.

In the Hilbertian presentation of quantum physics, measurements are pro-
jections. The projection of a nonnull vector x onto a closed subspace A is never
orthogonal to x, unless x is orthogonal to A. Therefore, if x is in some subspace
B, but its projection on A is orthogonal to B, then this projection is the null vector.

Lemma 3. (Illegitimate, Interference) For any x ∈ X, α, β ∈ M, if x ∈ FP(β),
i.e., β(x) = x, and α(x) ∈ Z(α), i.e., β(α(x)) = 0, then x ∈ Z(α), i.e., α(x) = 0.

Proof: Assume x ∈ FP(β) and β(α(x)) = 0. Then (α ◦ β)(x) = 0 ∈ FP(α). By
Interference, then, α(x) ∈ FP(β) and β(α(x)) = α(x), i.e., 0 = α(x). �

We shall now sort out the relation between fixpoints and zeros. The next
result is a dual of Lemma 5.3.
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Lemma 4. (Illegitimate, Interference, Negation) ∀x ∈ X,∀α, β ∈ M if x ∈
Z(β) and α(x) ∈ FP(β), then x ∈ Z(α). In other terms, if β(x) = 0 and β(α(x)) =
α(x), then α(x) = 0.

Proof: Consider the measurement ¬β guaranteed by Negation. If we have
x ∈ FP(¬β) and α(x) ∈ Z(¬β), then, by Lemma 5.3, we have x ∈ Z(α). �

Lemma 5. (Illegitimate, Idempotence, Interference, Negation) For any x ∈
X, α, β ∈ M, FP(α) ⊆ FP(β) iff Z(β) ⊆ Z(α).

Proof: Suppose FP(α) ⊆ FP(β) and x ∈ Z(β). Since, by Idempotence, α(x) ∈
FP(α), we have, by assumption, α(x) ∈ FP(β). By Lemma 5.4, then x ∈ Z(α).

Suppose now that Z(β) ⊆ Z(α). We have FP(¬β) ⊆ FP(¬α) and by what we
just proved: Z(¬α) ⊆ Z(¬β). We conclude that FP(α) ⊆ FP(β). �

We shall now consider the composition of measurements. First, we show the
symmetry of the preservation relation.

Lemma 6. (Idempotence, Interference) For any α, β ∈ M,α preserves β iff β

preserves α.

Proof: Assume α preserves β, and x ∈ FP(α). By Idempotence, β(x) ∈ FP(β).
Since α preserves β, α(β(x)) ∈ FP(β). The assumptions of Interference are
satisfied and we conclude that β(x) ∈ FP(α). We have shown that β pre-
serves α. �

Lemma 7. (Illegitimate, Idempotence, Interference, Negation) For any α, β ∈
M, if α ◦ β ∈ M, then FP(α ◦ β) = FP(α) ∩ FP(β).

Proof: Since Z(α) ⊆ Z(α ◦ β), Lemma 5 implies that FP(α ◦ β) ⊆ FP(α). By
Idempotence of β, FP(α ◦ β) ⊆ FP(β). We see that FP(α ◦ β) ⊆ FP(α) ∩ FP(β).
But the inclusion in the other direction is obvious. �

We shall now show that the converse of Composition holds.

Lemma 8. (Illegitimate, Idempotence, Interference, Negation) For any α, β ∈
M , if α ◦ β ∈ M then β preserves α.

Proof: By Lemma 7, FP(α ◦ β) ⊆ FP(α). For any x, (α ◦ β)(x) is therefore a
fixpoint of α. Assume x ∈ FP(α). Then, (α ◦ β)(x) = β(x) is a fixpoint of α. �
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Lemma 9. (Illegitimate, Idempotence, Interference, Composition, Negation)
For any α, β ∈ M, α ◦ β ∈ M, iff β preserves α.

Proof: The only if part is Lemma 8. The if part is composition. �

Lemma 10. (Illegitimate, Idempotence, Interference, Composition, Negation)
For any α, β ∈ M, α ◦ β ∈ M iff β ◦ α ∈ M.

Proof: By Lemmas 9 and 6. �

Lemma 11. (Illegitimate, Idempotence, Interference, Composition, Cumula-
tivity, Negation) For any α, β ∈ M, α ◦ β ∈ M iff α and β commute, i.e.,
α ◦ β = β ◦ α.

Proof: Assume, first, that α ◦ β ∈ M . By Lemma 10, β ◦ α ∈ M . By Lemma 7,
FP(α ◦ β) = FP(β ◦ α), which implies the claim by Lemma 2.

Assume, now that α and β commute. We claim that α preserves β: indeed, if
β(x) = x, then β(α(x)) = α(β(x)) = α(x) and therefore, by Composition, β ◦ α

is a measurement. �

Lemma 12. (Illegitimate, Idempotence, Interference, Composition, Cumulativ-
ity, Negation) For any α, β ∈,M , if FP(α) ⊆ FP(β), then α ◦ β = β ◦ α = α.

Proof: If FP(α) ⊆ FP(β), then, clearly α ◦ β = α by Idempotence of α. There-
fore α ◦ β ∈ M and, by Lemma 11, α and β commute. �

6. CONNECTIVES IN M-ALGEBRAS

6.1. Connectives for Arbitrary Measurements

The reader has noticed that negation plays a central role in our presentation of
M-algebras, through the Negation requirement and that this requirement is central
in the derivation of many of the lemmas of Section 5. Indeed, Negation expresses
the orthogonality structure so fundamental in orthomodular and Hilbert spaces.
The requirement of Negation corresponds, for the logician, to the existence of a
connective whose properties are those of a classical negation. Indeed, for example,
as shown by Corollary 1, double negations may be ignored, as is the case in clas-
sical logic. In Birkhoff and von Neumann (1936), the logical language presented
includes negation, interpreted as orthogonal complement, and this is consistent
with our interpretation. But Birkhoff and von Neumann (1936), also defines other
connectives: conjunction, disjunction and many later works on quantum logic also
define implication (sometimes a number of implications). Our treatment does not
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require such connectives, or more precisely, our treatment does not require that
such connectives be defined between any pair of measurements.

Consider conjunction. One may consider only M-algebras in which, for any
α, β ∈ M there is a measurement α ∧ β ∈ M such that FP(α ∧ β) = FP(α) ∩
FP(β). There are many such M-algebras, since any M-algebra defined by an
orthomodular space and the family of all its (projections on) closed subspaces
has this property since the intersection of any two closed subspaces is a closed
subspace. But our requirements do not imply the existence of such a measurement
α, β ∈ M for every α and β.

For disjunction, one may consider requiring that for any α, β ∈ M there be a
measurement α ∨ β ∈ M such that Z(α ∨ β) = Z(α) ∩ Z(β), and the M-algebras
defined by Hilbert spaces satisfy this requirement. Not all M-algebras satisfy this
requirement.

For implication, in general M-algebras, assuming conjunction and disjunc-
tion, one could require that for any α, β ∈ M there be a measurement α → β ∈ M
such that FP(α → β) = FP(¬α ∨ (α ∧ β)), and the M-algebras defined by Hilbert
spaces satisfy this requirement. Indeed, works in quantum logic sometimes con-
sider more than one implication, see Dalla Chiara (2001).

The thesis of this paper is that connectives should not be defined for arbitrary
measurements, but only for commuting measurements. One of the novel features
of M-algebras is that conjunction, disjunction and implication are defined only
for commuting measurements. The next section will show that this restriction
leads to a classical propositional logic. If one restricts oneself to commuting
measurements, then, contrary to the unrestricted connectives of Birkhoff and von
Neumann (1936), conjunction and disjunction distribute, and, in fact, the logic
obtained is classical.

6.2. Connectives for Commuting Measurements

Let us take a second look at propositional connectives in M-algebras, with
particular attention to their commutation properties. We shall assume that 〈X, M〉
is an M-algebra.

6.2.1. Negation

Negation asserts the existence of a Negation for every measurement. Let us
study the commutation properties of ¬α.

Lemma 13. ∀α, β ∈ M, if α commutes with β, then ¬α commutes with β.

Proof: Assume α commutes with β. We shall see that β preserves ¬α.
Let x ∈ FP(¬α). We have x ∈ Z(α). But (α ◦ β)(x) = (β ◦ α)(x). Therefore
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0 = α(β(x)), β(x) ∈ Z(α) and β(x) ∈ FP(¬α). We have shown that β pre-
serves ¬α. By Composition, (¬α) ◦ β ∈ M and, by Lemma 11, ¬α commutes
with β. �

Corollary 2. ∀α, β ∈ M, α and β commute iff ¬α and β commute iff α and ¬β

commute iff ¬α and ¬β commute.

Proof: By Lemma 13 and Corollary 1. �

6.2.2. Conjunction

We shall now define a conjunction between commuting measurements.

Definition 1. For any commuting measurements α β ∈ M, the conjunction α ∧ β

is defined by: α ∧ β = α ◦ β = β ◦ α.

By Lemma 11, the conjunction, as defined, is indeed a measurement.

Lemma 14. For any commuting α, β ∈ M, the conjunction α ∧ β is the unique
measurement γ such that FP(γ ) = FP(α) ∩ FP(β).

Proof: By Lemmas 2 and 7. �

One immediately sees that conjunction among commuting measurements is
associative, commutative and that α ∧ α = α for any α ∈ M.

Let us now study the commutation properties of conjunction.

Lemma 15. ∀α, β, γ ∈ M, that commute in pairs, α ∧ β commutes with γ .

Proof:

(α ∧ β) ◦ γ = (α ◦ β) ◦ γ = α ◦ (β ◦ γ ) = α ◦ (γ ◦ β)

= (α ◦ γ ) ◦ β = (γ ◦ α) ◦ β = γ ◦ (α ◦ β) = γ ◦ (α ∧ β)

�
6.2.3. Disjunction

One may now define a disjunction between two commuting measurements
in the usual, classical, way.

Definition 2. For any commuting measurements α, β ∈ M, the disjunction α ∨ β

is defined by: α ∨ β = ¬(¬α ∧ ¬β).
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By Corollary 2, the measurements ¬α and ¬β commute, therefore their
conjunction is well-defined and the definition of disjunction is well-formed.

The commutation properties of disjunction are easily studied.

Lemma 16. ∀α, β, γ ∈ M that commute in pairs, α ∨ β commutes with γ .

Proof: Obvious from Definition 7 and Lemmas 13 and 15. �

The following is easily proved: use Definition 7, Negation and Lemmas 5, 2
and 11.

Lemma 17. For any commuting measurements, α and β, their disjunction α ∨ β

is the unique measurement γ such that Z(γ ) = Z(α) ∩ Z(β).

Lemma 18. If α, β ∈ M commute, then FP(α) ∪ FP(β) ⊆ FP(α ∨ β).

The inclusion is, in general, strict.

Proof: Since Z(α ∨ β) ⊆ Z(α), by Lemma 5. �

Contrary to what holds in classical logic, in M-algebras we can have a state
x that satisfies the disjunction α ∨ β but does not satisfy any one of α or β.
This is particularly interesting when α and β represent measurements of different
values for the same physical quantity. In this case, one is tempted to say that
such an x satisfies α not entirely but in part and β in some other part. In the
Hilbertian formalism, x is a linear combination of the two vectors α(x) and β(x) :
x = c1α(x) + c2β(x). The coefficients c1 and c2 describe in what proportions the
state x, that satisfies α ∨ β satisfies α and β, respectively. The consideration of
structures richer than M-algebras that include this quantitative information is left
for future work.

6.2.4. Implication

Implication (→) is probably the most interesting connective. It will play a
central role in our treatment of connectives.

Definition 2. For any commuting measurements α, β ∈ M, the implication
α → β is defined by: α → β = ¬(α ∧ ¬β).

By Corollary 2, the measurements α and ¬β commute, therefore their con-
junction is well-defined and the definition of implication is well-formed.

The commutation properties of implication are easily studied.
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Lemma 19. ∀α, βγ ∈ M that commute in pairs, α → β commutes with γ .

Proof: Obvious from Definition 8 and Lemmas 13 and 15. �

The following is easily proved: use Definition 8, Negation and Lemmas 5, 2
and 11.

Lemma 20. For any commuting measurements, α and β, their implication
α → β is the unique measurement α → β such that Z(γ ) = FP(α) ∩ Z(β).

Lemma 20 characterizes the zeros of α → β. Our next result characterizes
the fixpoints of α → β in a most telling and useful way.

Lemma 21. For any commuting measurements, α and β, their implication α →
β is the unique measurement γ such that FP(γ ) = {x ∈ X|α(x) ∈ FP(β)}.

Proof: Assume α and β commute, and x ∈ X. Now, α(x) ∈ FP(β) iff (by Nega-
tion) α(x) ∈ Z(¬β) iff (α ◦ (¬β))(x) = 0 iff (by Definition 6 and Lemma 13)
(α ∧ (¬β))(x) = 0 iff x ∈ Z(α ∧ (¬β)) iff (by Negation) x ∈ FP(¬(α ∧ (¬β)))
iff (by Definition 8) x ∈ FP(α → β). �

The following is immediate.

Corollary 3. For any commuting measurements α and β, if x ∈ FP(α) and
x ∈ FP(α → β), then x ∈ FP(β).

One may now ask whether the propositional connectives we have defined
amongst commuting measurements behave classically. In particular, assuming
that measurements α, β and γ commute in pairs, does the distribution law hold,
i.e., is it true that (α ∨ β) ∧ γ = (α ∧ γ ) ∨ (β ∧ γ ). In the next section, we shall
show that amongst commuting measurements propositional connectives behave
classically.

7. AMONGST COMMUTING MEASUREMENTS
CONNECTIVES ARE CLASSICAL

Let us, first, remark on the commutation properties described in Lemmas 13,
15, 16 and 19. Those lemmas imply that, given any set A ⊆ M of measurements
in an M-algebra, such that any two elements of A commute, one may consider the
propositional calculus built on A (as atomic propositions). Each such proposition
describes a measurement in the original M-algebra (an element of M) and all such
measurements commute. We shall denote by Prop(A) the propositions built on A.
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We shall now show that, in any such Prop(A) all classical propositional
tautologies hold at every state x ∈ X.

Theorem 1. Let 〈X,M〉 be an M-algebra. Let A ⊆ M be a set of pairwise
commuting measurements. If α ∈ Prop(A) is a classical propositional tautology,
then FP(α) = X.

The converse does not hold, since it is easy to build M-algebras in which, for
example, a given measurement holds at every state.

We shall use the axiomatic system for propositional calculus found on p.
31 of Mendelson’s (1964) to prove that any classical tautology α built by using
only negation and implication has the property claimed. We shall then show that
conjunction and disjunction may be defined in terms of negation and implication as
usual. The proof will proceed in six steps: Modus Ponens, the three axiom schemes
of Mendelson’s system, conjunction, and disjunction. The reader should notice
how tightly the three axiom schemas correspond to the commutation assumption.

Lemma 22. For any commuting measurements α and β, if FP(α) = X and
FP(α → β) = X, then FP(β) = X.

Proof: By Corollary 3. �

Lemma 23. For any commuting measurements α and β,

FP(α → (β → α)) = X.

Proof: Since α and β commute, for any x ∈ X : β(α(x)) = α(β(x)), therefore,
by Idempotence, we have β(α(x)) ∈ FP(α). By Lemma 21, for any x, α(x) ∈
FP(β → α). By the same lemma: x ∈ FP(α → (β → α)). �

Lemma 24. For any pairwise commuting measurements α, β and γ

FP((α → (β → γ )) → ((α → β) → (α → γ ))) = X.

Proof: By Lemma 21, it is enough to show that for any x ∈ X, if y = (α → (β →
γ ))(x), then, if we define z = (α → β)(y), and define w = α(z), then we have:
γ (w) = w. But since all the measurements above commute, by Idempotence, the
state w satisfies α → (β → γ ), α → β and α. By Corollary 3, w satisfies β and
β → γ . For the same reason w satisfies γ . �
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Lemma 25. For any commuting measurements α and β,

FP((¬β → ¬α) → ((¬β → α) → β)) = X.

Proof: By Lemma 21, it is enough to show that for any x ∈ X, if y = (¬β →
¬α)(x), then, if we define z = (¬β → α)(y) then we have: β(z) = z. But since all
the measurements above commute, by Idempotence, the state z satisfies ¬β →
¬α and ¬β → α. Therefore, by Lemma 21, (¬β)(z) satisfies both ¬α and α.
Therefore, (¬β)(z) = 0 and therefore, by Negation, z ∈ FP(β). �

Lemma 26. For any commuting measurements α and β, α ∧ β = ¬(α
→ ¬β).

Proof:

FP(¬(α → β)) = Z(α → ¬β) = FP(α) ∩ Z(¬β) = FP(α) ∩ FP(β).

By Negation, Lemma 20 and Negation. The conclusion then follows from Lemma
14. �

Lemma 27. For any commuting measurements α and β, α ∧ β = (¬α) → β.

Proof:

Z((¬α) → β) = FP(¬α) ∩ Z(β) = Z(α) ∩ Z(β).

By Lemma 20 and Negation. The conclusion then follows from Lemma 17. �

We have proved Theorem 1.
The following is a Corollary.

Corollary 1. Let 〈X, M〉 be an M-algebra. Let A ⊆ M be a set of pairwise
commuting measurements. If α, β ∈ Prop(A) are such that α logically implies β,
i.e., α |= β, then FP(α) ⊆ FP(β). If α and β are logically equivalent, they are
equal.

Proof: Since α → β is a tautology, by Theorem 1, FP(α → β) = X. By
Lemma 21, then, FP(α) ⊆ FP(β). If α and β are logically equivalent, they
have the same set of fixpoints by the above, and, by Lemma 2 they are
equal. �
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8. ORTHOMODULARITY OF M-ALGEBRAS

In this section, we shall clear up the relation between our M-algebras and the
lattice structures largely studied previously (see (Miklós Rédei, 1998) for an in-
depth study and review). The set of measurements M of an M-algebra is naturally
endowed with a partial order.

Definition 3. Let 〈X, M〉 be an M-algebra. For any α, β ∈ M let α ≤ β iff
FP(α) ⊆ FP(β) (or equivalently, by Lemma 5, iff Z(β) ⊆ Z(α)).

Lemma 28. Let 〈X, M〉 be an M-algebra. The relation ≤ on M is a partial order.
The measurement � is the top element and the measurement ⊥ is the bottom
element, i.e.: for any α ∈ M,⊥ ≤ α ≤ �. Any two commuting measurements
have a greatest lower bound and a least upper bound in M.

The set M is not, in general, a lattice, under ≤.

Proof: The relation ≤ is a partial order because ⊆ is. For any α ∈ M, FP(⊥) =
{0} ⊆ FP(α) ⊆ X = FP(�). Consider any two commuting measurements α and
β. By Lemma 14 the measurement α ∧ β is the greatest lower bound of α and β.
By Lemma 17 and the definition of ≤ in terms of Z, it is clear that α ∨ β is the
least upper bound of α and β. �

M-algebras represent a departure from the structures previously considered
by researchers in Quantum Logic because they are not lattices. Orthomodular
lattices have been considered by most to be the structure of choice. Orthomodular
lattices are lattices equipped with a unary operation of orthocomplementation ⊥

satisfying the following properties (see for example Rédei (1998), pp. 33–35). For
any α, β, γ :

1. (α⊥)⊥ = α,
2. if α ≤ β, then β⊥ ≤ α⊥,
3. the greatest lower bound of α and α⊥ is the bottom element,
4. the least upper bound of α and α⊥ is the top element, and
5. if α ≤ β and γ is the greatest lower bound of α⊥ and β, then β is the least

upper bound of γ and α.

Lemma 29. Let 〈X, M〉 be an M-algebra. Each one of the properties above
holds for the partially ordered set 〈M,≤〉 when negation is taken for ortho-
complementation.

Proof: Item 1 holds by Corollary 1. Item 2 holds by Negation and Lemma 5.
Item 3 holds since α and ¬α commute, by Lemma 28, their greatest lower bound is
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α ∧ ¬α and FP(α ∧ ¬α) = FP(α) ∩ Z(α) = {0} = FP(⊥). Item 4 holds similarly:
Z(α ∨ ¬α) = {0} = Z(�). Item 5 follows from the following considerations. If
α ≤ β, then α and β commute by Lemma 12. Therefore, by Lemma 13, ¬α

and β commute, and by Lemma 28 γ = ¬α ∧ β. Also, α and γ commute by
Lemma 16 and by Lemma 28 all we have to show is that β = α ∨ (¬α ∧ β).
But β is logically equivalent to (α ∧ β) ∨ (¬α ∧ β). Corollary 4 implies that
β = (α ∧ β) ∨ (¬α ∧ β). By assumption α ≤ β and, by Lemma 12 α ∧ β = α.
We conclude that β = α ∨ (¬α ∧ β). �

The next section will consider separable and strongly separable M-algebras.

9. SEPARABLE AND STRONGLY SEPARABLE M-ALGEBRAS

9.1. Separable M-algebras

Lemma 30. In a separable M-algebra, a measurement is classical if and only if
it commutes with any measurement.

Proof: Suppose α is classical. Consider any x ∈ X and any β ∈ M. Since α is
classical we know that x ∈ FP(α) or x ∈ Z(α) and β(x) ∈ FP(α) or β(x) ∈ Z(α).
If x ∈ FP(α), by Lemma 3, β(x) ∈ Z(α) implies x ∈ Z(β) and (α ◦ β)(x) = 0 =
(β ◦ α)(x). But β(x) ∈ FP(α) implies (α ◦ β)(x) = β(x) = (β ◦ α)(x).

If x ∈ Z(α) and β(x) ∈ FP(α), by Lemma 4, β(x) = 0 and (α ◦ β)(x) = 0 =
(β ◦ α)(x). If β(x) ∈ Z(α), then (α ◦ β)(x) = 0 = (β ◦ α)(x).

Suppose, now that α commutes with any measurement β. By contradiction,
assume α(x) �= 0 and α(x) �= x. By Separability there is some measurement γ

such that x ∈ FP(γ ) and α(x) �= FP(γ ). But α and γ commute and: (α ◦ γ )(x) =
(γ ◦ α)(x) = α(x). We see that α(x) ∈ FP(γ ), a contradiction. �

Note that a measurement α is classical (see Def inition 5) iff Def (α) = X.

Lemma 31. If α is classical, so is ¬α. If α and β are classical, then so are
α ∧ β, α ∨ β and α → β.

Proof: If α is classical, Def (α) = X and therefore Def (¬α) = X. For con-
junction (α ∧ β)(x) = (α ◦ β)(x) = (β ◦ α)(x). If either α(x) or β(x) is 0 then
(α ∧ β)(x) = 0, otherwise α(x) = x = β(x) and (α ∧ β)(x) = x. The definitions
of disjunction and implication in terms of negation and conjunction, then ensure
the claim. �
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9.2. Strongly Separable M-algebras

We shall show that much of the linear dependency structure of orthomodular
and Hilbert spaces is present in any strongly separable M-algebra. Theorem 2
shows that the action of the measurements in a strongly-separable M-algebra is
already encoded in its order structure.

Theorem 2. Let 〈X, M〉 be any strongly separable M-algebra. The following
two properties are satisfied for any α ∈ M and any x ∈ X:

1. x ∈ FP(α → eα(x)), and
2. if x /∈ Z(α), there exists a unique y ∈ FP(α) such that x ∈ FP(α → ey).

This y is α(x).

Proof: Note, first that the measurements α → eα(x) and α → ey are well defined
since α and eα(x) commute by Lemma 12 since FP(eα(x)) = {0, x} ⊆ FP(α) by
idempotence, and, similarly α and ey commute if y ∈ FP(α).

Both claims follow straightforwardly from Lemma 21 and the following:
α(x) ∈ FP(eα(x)), and α(x) ∈ FP(ey) iff α(x) = 0 or α(x) = y. �

The following shows the decomposition of any state in its orthogonal com-
ponents.

Corollary 2. Let 〈X, M〉 be any strongly-separable M-algebra. For any α ∈ M
and any x ∈ X, x ∈ FP(eα(x) ∨ e(¬α)(x)).

Proof: Note that, since eα(x) and e(¬α)(x) are orthogonal, they commute and the
disjunction of the claim is well-defined.

By Theorem 2, we have both x ∈ FP(¬α ∨ eα(x)) and x ∈ FP(α ∨ e(¬α)(x)).
But all measurements mentioned above commute and the conjunction of the two
disjunctions is well-defined and x ∈ FP((α ∨ e(¬α)(x))) ∧ (¬α ∨ eα(x))). But, by
Theorem 1:

(α ∨ e(¬α)(x)) ∧ (¬α ∧ eα(x)) = e(¬α)(x) ∨ eα(x).

�

10. REFLECTIONS AND FURTHER WORK

The formalism of M-algebras is weaker than that of Hilbert spaces and may
be motivated by epistemological concerns. Nevertheless, some of the properties
of quantum measurements may be understood in this weaker formalism. Should
additional principles be incorporated into M-algebras? Probably, the next step will
be to incorporate some quantitative information about the relation between a state
and a measurement.
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Corollary 30 may explain why elementary particles all have a definite value
for their total spin. The corresponding Hermitian operator commutes with every
spin operator, and most probably any physically meaningful operator on an isolated
particle. Therefore, the corresponding measurements (of the different values of
the total spin) are classical. This means that, for any elementary particle its total
spin has a definite value. Particles with different definite values for their total spin
are better considered different particles: no measurement can change their total
spin.

Can the formalism of M-algebras throw light on superselection rules, such
as the symmetrization postulate?

Another tantalizing question concerns the tensor product of M-algebras. What
should it be? Would this explain why a quantic system composed of two separate
subsystems must be represented by the tensor product of the spaces representing
the subsystems?
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